Module 09-Lesson 4
 The Kinetic Energy / Work Theorem

Question 1: How much work is done by the force that accelerates a $1500-\mathrm{kg}$ car from $60 \mathrm{~km} / \mathrm{h}$ to $90 \mathrm{~km} / \mathrm{h}$?

Question 2: A large cruise ship of mass $7.0 \times 10^{7} \mathrm{~kg}$ moves with a speed of $10.0 \mathrm{~m} / \mathrm{s}$ as it approaches the shore. How much work will be required in order to stop the ship?

Problem: A neutron of mass $1.67 \times 10^{-27} \mathrm{~kg}$ travels at a speed of $10^{3} \mathrm{~m} / \mathrm{s}$ as it collides with a heavy nucleus. After the collision the neutron rebounds with a speed of $10^{2} \mathrm{~m} / \mathrm{s}$.
(a) Determine the work done on the neutron by the interaction force between the nucleus and the neutron.
(b) Estimate the strength of the interaction if the distance over which the collision occurs is $10^{-15} \mathrm{~m}$. Assume that the nucleus is much more massive than the neutron so that the force is constant during the collision.

