Module 08-Lesson 4
 Elastic Potential Energy

Question 1: How far would you have to stretch a spring with $k=1.5 \mathrm{kN} / \mathrm{m}$ for it to store 240 J of energy?

Question 2: Tendons are strong elastic fibers that attach muscles to bones. During a physiological test on a particular tendon, it was found that when a 250 g object was hung from it, the tendon stretched by 1.23 cm . Find the force constant of this tendon in N / m and the energy stored in the tendon, assuming that it obeys Hooke's law.

Problem: The spring in Fig. 1 has an elastic constant $100 \mathrm{kN} / \mathrm{m}$. A $500-\mathrm{g}$ cart is placed against the spring, which is then compressed 10 cm . When the block is released, how high up the curved track does the cart rise? Assume friction is negligible.

FIG. 1: Cart launch by spring compression

