Module 04 - Lesson 4
 Non-uniform Circular Dynamics

Question 1: A $1200-\mathrm{kg}$ car is travelling on a $300-\mathrm{m}$ circular path with a radial acceleration of $2.0 \mathrm{~m} / \mathrm{s}^{2}$ and a tangential acceleration of $1.0 \mathrm{~m} / \mathrm{s}^{2}$. Calculate the magnitude of the net force acting on the car.

Question 2: A 100-g marble rotates on a 1-m circular path with an initial speed of 2 m / s. If the marble experiences a tangential acceleration of $1.2 \mathrm{~m} / \mathrm{s}^{2}$ find the radial and tangential components of the initial net force acting on the marble.

Problem: A car, with an initial speed of $80 \mathrm{~km} / \mathrm{h}$, comes to a full stop as it rotates on a circular track radius of 300 m . The coefficient of friction between the tires of the tired and the road is 0.20 . (a) Find the magnitude of the car's tangential and radial acceleration? (b) How long will it take the car to stop?

