Module 03 - Lesson 2
 Acceleration in Two Dimensions

Question 1: A bike's velocity is given by $\vec{v}=c t^{3} \hat{\imath}+d \hat{\jmath}$ where t is time, $c=2.5 \mathrm{~ms}^{4}$, and $d=-1.5 \mathrm{~m} / \mathrm{s}$. What is the magnitude and direction of the bike's acceleration?

Question 2: An ice skater is gliding along at $3.0 \mathrm{~m} / \mathrm{s}$ for a while and then she undergoes an acceleration of magnitude $1.2 \mathrm{~m} / \mathrm{s}^{2}$ along her direction of motion for 3.0 s . Find the magnitude of the final velocity.

Problem: A cat chasing a mouse is moving at a velocity of $4.00 \mathrm{~m} / \mathrm{s}$ due East at one moment and at $4.80 \mathrm{~m} / \mathrm{s}$ North 4.00 s later. Find (a) the x and y components of the cat's average acceleration during that time and (b) the magnitude and direction of the cat's average acceleration during that time.

