Module 02-Lesson 4

From Acceleration to Velocity and from Velocity to Displacement

Question 1: A little cat is running up a hill along a straight line along the x-axis. The cat starts slowing down as she gets tired according to the velocity-time graph shown in Fig. 1. What is the distance travelled by the cat between $t=2 \mathrm{~s}$ and $t=6 \mathrm{~s}$?

FIG. 1: A cat's velocity-time graph

Question 2: A particle starts from rest and accelerates according to the accelerationtime graph shown in Fig. 2. Determine the particle's speed at $t=10.0 \mathrm{~s}$ and at $t=20.0 \mathrm{~s}$.

FIG. 2: A particle's acceleration-time graph

Problem: A car is driving through a green light at $t=0$ located at $x=0$ with an initial speed of $12 \mathrm{~m} / \mathrm{s}$. The acceleration of the car is zero for 1 second, and then the car accelerates at $-6 \mathrm{~m} / \mathrm{s}^{2}$ for the next 2 seconds. Find the velocity and position of the car as
functions of time, and draw acceleration-time, velocity-time, and position-time graphs for the motion of the car.

