Module 02-Lesson 1
 Instantaneous Velocity and Acceleration

Question 1: The altitude of a rocket in the first half-minute of its ascent is given $y=b t^{2}$ by where $b=3.0 \mathrm{~m} / \mathrm{s}^{2}$. Find the rocket's velocity at $t=10 \mathrm{~s}$.

Question 2: Find an expression for the acceleration as a function of time for the rocket described in the previous question.

Problem: The displacement of a car moving in a straight line as a function of time is described by the function $x=t^{2}-5 t+1 \mathrm{~m}$, where t is measured in seconds and all constants are assumed to have the correct SI units. (a) Determine the particle's position, velocity, and acceleration at $t=1.0 \mathrm{~s}$. (b) Are there any turning points in the particle's motion? If so, at what position or positions? (c) Where is the particle when $v_{x}=4.0 \mathrm{~m} / \mathrm{s}$?

